26,217 research outputs found

    Inkjet printed multimetal microelectrodes on PDMS for functionalized microfluidic systems

    Get PDF
    A novel direct method of metal microelectrode patterning on polydimethylsiloxane (PDMS) using inkjet printed gold and silver nanoparticles to form electrochemical sensors is presented. Inkjet printing is an additive microfabrication technique enabling microelectrode patterning directly over large areas at low-temperatures. (3-mercaptopropyl) trimethoxysilane (MPTMS) to promote PDMS surface wettability and improve metal adhesion and a pixel-printing subsampling method to overcome surface tension driven ink-droplet coalescence, are then employed to form a robust fabrication process. The resulting printed gold and silver microelectrodes exhibit good compactness, continuity and conductivity, and are used to manufacture functionalized microfluidic systems with in-situ three-electrode electrochemical sensors.published_or_final_versio

    Log-Periodic Dipole Array Antenna as Chipless RFID Tag

    Get PDF
    postprin

    The orientation-preserving diffeomorphism group of S^2 deforms to SO(3) smoothly

    Full text link
    Smale proved that the orientation-preserving diffeomorphism group of S^2 has a continuous strong deformation retraction to SO(3). In this paper, we construct such a strong deformation retraction which is diffeologically smooth.Comment: 16 page

    Dynamic consolidation problems in saturated soils solved through u-w formulation in a LME meshfree framework

    Get PDF
    A meshfree numerical model, based on the principle of Local Maximum Entropy (LME), including a B-bar algorithm to avoid instabilities, is applied to solve axisymmetric consolidation problems in elastic saturated soils. This numerical scheme has been previously validated for purely elastic problems without water (mono phase), as well as for steady seepage in elastic porous media. Hereinafter, an implementation of the novel numerical method in the axisymmetric configuration is proposed, and the model is validated for well known theoretical problems of consolidation in saturated soils, under both static and dynamic conditions with available analytical solutions. The solutions obtained with the new methodology are compared with a finite element commercial software for a set of examples. After validated, solutions for dynamic radial consolidation and sinks, which have not been found elsewhere in the literature, are presented as a novelty. This new numerical approach is demonstrated to be feasible for this kind of problems in porous media, particularly for high frequency, dynamic problems, for which very few results have been found in the literature in spite of their high practical importance

    An interstitial fluid transdermal extraction system for continuous glucose monitoring

    Get PDF
    A novel microfluidic system which is fabricated with five polydimethylsiloxane layers for interstitial fluid (ISF) extraction, collection, and measurement toward the application of continuous and real-time glucose monitoring is presented in this paper. The system consists of a micro vacuum generator for ISF transdermal extraction and fluid manipulation, micro chambers for the collection of ISF, micro pneumatic valves for fluid management, and a micro flow sensor for ISF volume measurement. Sequentially controlled by the pneumatic valves, the ISF extraction, collection, and volumetric measurement functions of the system were demonstrated using the stable vacuum generated by the integrated vacuum generator. Through low-frequency ultrasound pretreated full-thickness pig skin, the normal saline solution with different glucose concentrations was transdermally extracted, collected, and measured. The absolute error in the volume measurement of the transdermally extracted ISF analog was less than 0.05 μ L. The microfluidic system makes it possible to realize the clinical application of continuous glucose monitoring based on ISF transdermal extraction technology. © 2012 IEEE.published_or_final_versio
    • …
    corecore